The Kernel of the Magnus Representation of the Automorphism Group of a Free Group Is Not Finitely Generated
نویسنده
چکیده
In this paper, we show that the abelianization of the kernel of the Magnus representation of the automorphism group of a free group is not finitely generated.
منابع مشابه
Symplectic structures on right-angled Artin groups: Between the mapping class group and the symplectic group
We define a family of groups that include the mapping class group of a genus g surface with one boundary component and the integral symplectic group Sp.2g;Z/ . We then prove that these groups are finitely generated. These groups, which we call mapping class groups over graphs, are indexed over labeled simplicial graphs with 2g vertices. The mapping class group over the graph is defined to be ...
متن کاملOn trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کاملA Birman exact sequence for AutpFnq
The Birman exact sequence describes the effect on the mapping class group of a surface with boundary of gluing discs to the boundary components. We construct an analogous exact sequence for the automorphism group of a free group. For the mapping class group, the kernel of the Birman exact sequence is a surface braid group. We prove that in the context of the automorphism group of a free group, ...
متن کاملFinitely Presented MV-algebras with Finite Automorphism Group
Please see [1] for background on MV-algebras. We address the question, which MV-algebras have finite automorphism group. The automorphism group of the free MV-algebra on 1 generator is just the group of order 2 (folklore). In contrast, it is known that the automorphism group of the free MV-algebra on 2 generators is not even locally finite [4, 2]. Not much else seems to be known. Let us restric...
متن کاملFirst Cohomology Groups of the Automorphism Group of a Free Group with Coefficients in the Abelianization of the Ia-automorphism Group
We compute a twisted first cohomology group of the automorphism group of a free group with coefficients in the abelianization V of the IA-automorphism group of a free group. In particular, we show that it is generated by two crossed homomorphisms constructed with the Magnus representation and the Magnus expansion due to Morita and Kawazumi respectively. As a corollary, we see that the first Joh...
متن کامل